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Two-dimensional instabilities of steady 
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The stability of finite-amplitude double-diffusive interleaving driven by linear 
gradients of salinity and temperature is considered. We show that as the sinusoidal 
interleaving predicted by linear analysis grows to finite amplitude it is subject to 
instabilities centred along the lines of minimum vertical density gradient and 
maximum shear. These secondary instabilities could lead to the step-like density 
profiles observed in experiments. We show that these instabilities can occur for large 
Richardson numbers and hence are not driven by shear, but are driven, by double- 
diffusive effects. 

1. Introduction 
When a stratified body of fluid has lateral variations of both temperature and 

salinity it can often undergo instabilities that result in the formation of a series of 
almost horizontal convecting layers. Various configurations corresponding to this 
situation have been investigated experimentally, including applying temperature 
differences to stratified bodies of fluid at or between single or parallel boundaries 
(Thorpe, Hutt & Soulsby 1969; Chen, Briggs & Wirtz 1971; Wirtz, Briggs & Chen 
1972; Chen & Skok 1974; Paliwal & Chen 1 9 8 0 ~ ;  Narusawa & Suzukawa 1981; 
Tanny & Tsinober 1988) or from point or line sources (Huppert & Turner 1980; 
Huppert & Josberger 1980; Tsinober, Yahalom & Shlien 1983). Instabilities that lead 
to layer formation are also observed at interfaces between bodies of fluid with similar 
vertical density gradients, but with lateral differences in composition (Ruddick & 
Turner 1979; Holyer et al. 1987). Similar instabilities can also be formed by the 
presence of sloping insulating boundaries (Linden & Weber 1977 ; Chen &, Sandford 
1977). In addition to the theoretical work carried out by some of these investigators 
there has been further analysis of the case of temperature differences applied at single 
or parallel boundaries (Hart 1971, 1973; Paliwal & Chen 1980b; Thangam, Zebib & 
Chen 1981 ; Kerr 1989, 1990, 1991). 

Theoretical work has also been carried out on the effects of lateral compositional 
gradients on stratified fluids in the idealized case of uniform linear gradients in all 
directions, but with no horizontal density gradients (Stern 1967 ; Toole & Georgi 
1981 ; Posmentier & Hibbard 1982 ; Holyer 1983 ; McDougall 1985). This work uses 
a variety of models for the fluxes of the heat and salt : vertical fluxes due to salt 
fingering (Stern and Posmentier & Hibbard), eddy-flux coefficients (McDougall) and 
molecular diffusivities (Holyer). In  the latter case the fluid is always subject to 
instabilities if there are compensating horizontal temperature and salinity gradients. 
Similar results hold for other models of heat and salt fluxes provided the vertical 
gradients are such that small-scale convective mixing needed for these fluxes is 
sustained. 
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Holyer noted that the linear modes of her analysis also satisfied the fully nonlinear 
equations of motion. Hence a single unstable mode could grow exponentially to large 
amplitude and eventually result in there being density inversions in the fluid. It can 
be anticipated from this that the interleaving layers would themselves eventually 
become unstable. It is the purpose of this paper to  investigate these secondary 
instabilities in order to find what form they would take, when they may be observed, 
and to explain some of the features observed in experiments. This investigation 
is comprised of a two-dimensional linear stability analysis of the interleaving layers. 
This analysis follows a similar line to Holyer (1984) in her analysis of the stability of 
long two-dimensional salt fingers. 

In  $2 we set out the governing equations for steady double-diffusive interleaving 
driven by linear temperature and salinity gradients and derive the perturbation 
equations for the investigation of their linear stability. Some results obtained from 
this stability analysis are presented in 83, together with a look a t  the asymptotic 
limit of relatively weak horizontal background gradients. 

2. Perturbation equations 
Double-diffusive interleaving occurs when a body of fluid with vertical temperature 

and salinity gradients is subjected to lateral temperature and salinity gradients. 
Here we consider the idealized problem where interleaving develops in a fluid with 
linear gradients in all directions. We set the temperature and salinity to 

T(x, 2, t )  = T, +xTz + Z E  + T ( z ,  2, t )  ( 2 . l a )  

and S(x,z,t) = So+xSx+z~z+x'(x,Z,t), (2.1 b)  

where T,, !i?,, q,So ,  #, and S, are all constants, T and x' are two-dimensional 
perturbations to the background state, and x and z are the horizontal and vertical 
coordinates respectively. We assume that the density, p ,  depends linearly on the 
temperature and salinity : 

p = P o { l - a ( T - T , ) + p ( S - s , ) > ,  (2 .2)  

where a and /3 are positive constants. 
Double-diffusive interleaving arises as an instability to  an otherwise quiescent 

fluid and so we require that there is no net horizontal density gradient. This occurs 
when 

Without loss of generality we choose the x-axis so that 8, is positive. Hence, for any 
given depth, the salinity increases as x increases. 

Making the Boussinesq approximation, the equations for the perturbation stream 
function I+Y, temperature, T ,  and salinity, S, of an incompressible fluid are 

aT, = p8,. (2 .3)  

aT a$'- a t  - 
at aZ ax 
-+ J(k', T) -- T, +- T, = K~ V2 T', 

( 2 . 4 ~ )  

(2 .4b)  

( 2 . 4 ~ )  
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where the velocity 

and the Jacobian is given by 

aAaB 3AaB 
J ( A , B )  = -----. ax a2 a2 ax 

(2.4d) 

The acceleration due to gravity is denoted by g, the kinematic viscosity by v, the 
diffusivity of heat by K ~ ,  and the diffusivity of salt by K ~ .  

If the Jacobian terms are dropped we obtain a linear set of equations with constant 
coefficients. Hence we can express any solution as a linear superposition of solutions 
of the form 

($’, Y , S )  = Re{($:, TA,Sh)exp(ik.x+ht)}, (2.6) 

where $:, Tk and Sh are complex constants, k = ( k ,  m) is the wavenumber vector and 
h is the growth rate, which may be complex. Holyer (1983) noted that if only one 
such mode existed, say the fastest growing mode, then it would be a solution of the 
fully nonlinear governing equations. When a single such mode is substituted into 
(2.4) we derive the dispersion relation 

where ,u = ( k 2 + m 2 ) f  is the wavenumber for this interleaving mode. We restrict 
ourselves to consideration of the direct modes of instability with h real. Holyer noted 
that the direct modes of instability grew faster than the oscillatory modes except in 
the restricted case when 2 is negative, PS2/aq lies between 1 and ( (r+l) / (a+~) 
(defined in (2.10)), and /?iYz/aq is small. In these cases the fastest growing modes 
have the ratio m/k 4 1 and as such are nearly vertical. These instabilities will not 
concern us here. 

The fastest growing modes also satisfy the extra constraints 

By differentiating the characteristic equation (2.7) with respect to the wavenumber- 
vector components k and m we get two equations that are to be solved simultaneously 
with (2.7) to find the values of A, k and m that correspond to the maximum growth 
rate. Following Holyer we non-dimensionalize these equations. We define 

and 

h q=- 
K T Y 2  ’ 

( 2 . 9 ~ )  

(2.9 b d )  

where H is the horizontal Rayleigh number and R ,  and Rs are the vertical thermal 
and saline Rayleigh numbers. We have used here the lengthscale, of the fastest 
growing modes of instability as the appropriate natural lengthscale. 
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We also define 
V K 

g = -  , 7 = s ,  

K T  K T  
(2.10) 

where u is the Prandtl number and T the salt/heat diffusivity ratio. 

mode to the Rayleigh numbers are obtained: 
The following non-dimensional equations relating q and m/k for the fastest growing 

(2.1 1 a) 

(2.11b) 

(2.11c) 

In a physical problem we would not be able to calculate directly the three Rayleigh 
numbers from the background gradients, but only their ratios. From these ratios we 
can use the above equations to find q and the ratio mlk, and thence the Rayleigh 
numbers and the lengthscale of the instabilities. 

Instead of investigating the stability of the fastest growing mode, we follow Holyer 
(1984) in her investigation of the stability of salt fingers by looking at  the stability 
of modes with zero growth rate. The marginally stable interleaving layers that we 
choose to investigate are those that are parallel to the fastest growing layers. Having 
selected such a mode we can then give the intrusions arbitrary amplitude. We look 
a t  linear perturbations to these layers in order to investigate their stability. If the 
growth rate of these infinitesimal perturbations is larger than that of the fastest 
growing mode then these instabilities could be expected to manifest themselves in a 
physical situation. 

We non-dimensionalize the variables in the governing equations with respect to 
the following : 

(2.12u) 

(2.12 b)  

(2.12c) 

(2.12 a)  

x with respect to IpI-l, 

$’ with respect to K ~ ,  

T’ with respect to v ~ ~ I p l ~ / ( g a ) ,  

t with respect to ( P ~ K ~ ) - ~ ,  

8’ with respect to V K T I , I ~ I ’ / ( ~ P ) .  (2.12 e )  

This gives the non-dimensional governing equations, after dropping the primes : 

aT aS 
- - $ + J ( $ , V 2 $ )  = ---+V4$, u at ] ax ax 

a$ a$ 
[av2 
at ax aZ 

as a$ a$ 
at ax az 

aT 
- + J ( $ , T ) + R T - - H - =  V2T,  

-+ J ( $ , S )  + R s - - H -  = 7V2S. 

( 2 . 1 3 ~ )  

(2.13b) 

( 2 . 1 3 ~ )  
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By the choice of the non-dimensionalizations for T and S the Rayleigh numbers R,, 
R,  and H do not appear in the momentum equation, as is more common. This avoids 
possible problems associated with setting any of the Rayleigh numbers to zero. 

The marginally stable solution we select is denoted by 

$ = -$cos(g.x), T = ?sin(l .x),  S = #sin(g.x), (2.14a-c) 

with R = (&A) and k2 = i2+G2. (2.14d, e )  

For given ratio &If, the coefficients $, 9 and ŝ  and the wavenumber, /;, are related 

0 = i(P-#)-p$, ( 2 . 1 5 ~ )  

( ~ H - I ~ R , ) $  = 1;" 9, (2.15b) 

and (&H - iR,)$ = ~f i 's .  ( 2 . 1 5 ~ )  

The governing equations for the infinitesimal perturbations to this background 
state, $, p and s" are 

( 2 . 1 6 ~ )  

aP I 

-+$sin(k.x) k--m- +Tcos(R.x) 
at 

(2.16 b)  

as' * 
-+$sin(&-x) 
at 

( 2 . 1 6 ~ )  

These equations will have a solution that can be expressed in Floquet form: 

m 

($,p,s') = exp(At+i(kx+mz)} C (y?,, -iT,, -iS,)exp(ing.x), (2.17) 

with $,,Tn and S, complex constants. Substituting into (2.16) we obtain the 
following set of real equations for each n: 

n--m 

u ( k + n f )  u ( k + n f )  
h$n = -uKi $n-  K;  T n +  K; S n  

(k& - $m)$ + [(K;-1-k2) $,-I- (K2,+1-b2) $,+I>, (2.18a) 

AT, = -K5, T, + [ ( k  + n f )  R ,  - (m+n&)H] $, 

AS, = -7K5, S, + [ ( k +  n f )  R ,  - (m + nh)H] $, 
+ i ( k k - f m ) $ (  Tn-l - T,,,) + i ( k k -  fm)p($n-l  + $n+l), (2.18b) 

+ g ( k d - i m )  $ ( ~ n ~ l - S n + ~ ) + ~ ( k & - f m ) ~ ( ~ n ~ l  +$n+l), ( 2 . 1 8 ~ )  

where K5, = ( k + n f ) 2 + ( m + n & ) 2 .  (2.18d) 

Equations (2.18) can be expressed in terms of an infinite matrix 

hv = AV (2.19) 
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where v is the column vector (..., $,, T,, S,, $n+l, T,+l, Sn+l ,  ...) and A an infinite 
matrix whose coefficients are obtained from (2.18a-c). In  order to solve the stability 
problem the eigenvalues of a truncation of this matrix are found numerically, using 
routines from the NAG library. If the order of the matrix is sufficiently high then the 
eigenvalue with the largest real part will approximate those of the infinite system. 
This eigenvalue gives the growth rate of the fastest growing (or most slowly 
decaying) disturbance to the interleaving layers. The convergence of this eigenvalue 
can be tested by finding solutions for a range of truncations. I n  the subsequent work 
the truncation is chosen so that no significant variation is encountered when the 
order of the truncation is further increased. 

In  this paper we investigate the stability of the interleaving layers that occur 
when horizontal temperature and salinity gradients are present in a stratified fluid. 
The instabilities found all lie along the lines of minimum vertical density gradient. 
The instabilities are not particularly strongly influenced by the shear. They are 
driven principally by double diffusion, with modification due to the shear. 

Dimensional quantities (compositional gradients, diffusivities etc.) are important 
in determining the physical sizes and growth rates of the interleaving layers (see 
Holyer 1983). However, once the layers are established, the quantities important for 
the formation and evolution of instabilities are non-dimensional ; for example the 
ratio of the compositional gradients and the amplitude of the interleaving, which can 
be described in terms of, say, the ratio of the minimum to maximum vertical density 
gradients. The predictions of the analysis are also interpreted best in terms of non- 
dimensional quantities; for example the size of the instabilities compared to the 
background interleaving, or the growth rates compared to that of the fastest growing 
interleaving mode. Since i t  is in these terms that the instabilities can be best 
described, all subsequent discussion will concern non-dimensional quantities. 

3. Investigation of stability 
In this section we use the analysis set out in 52 to look a t  the stability of some 

particular examples of steady interleaving. One possible special case could be that of 
setting H = 0. This would recover the problem of the stability of salt fingers 
examined by Holyer (1984), whose results are reproduced when allowance is made for 
her use of the size of the salt finger with zero growth rate in her non- 
dimensionalizations, rather than the fastest growing fingers. 

It is impractical to investigate the full range of parameters present in this problem 
with horizontal gradients present as there are too many degrees of freedom. Different 
fluids with different salts can take a wide range of values of CT and 7. Also, there are 
three independent salinity and temperature gradients to choose from, but i t  is the 
ratio of these that is important, and so there are effectively only two degrees of 
freedom in choosing the gradients. This can be seen from (2.11) where the three 
Rayleigh numbers are $unctions of two parameters only, the non-dimensional growth 
rate q and the ratio &/k for the fastest growing mode. For the mode with zero growth 
rate that is parallel to this fastestlgrowing mode we can have one last degree of 
freedom, the arbitrary amplitude $. Hence the basic interleaving can be described 
by five independent parameters. We will restrict ourselves to investigating a subset 
of this parameter range in order to gain some insight into the driving mechanisms. 
First we consider only the case where (T = 10 and 7 = 0.01, the approximate values 
for common salt in water used by Holyer (1983). We will then look principally a t  two 
cases in some detail : (i) R, = 0 (no background vertical temperature gradient), and 
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FIQURE 1. Contours of constant growth rate of the interleaving instability of Holyer (1983) for the 
case R ,  = 0 with q = +. The contour interval is 0.2, with the zero and positive contours solid and 
negative contours dashed. 

(ii) R, = 0 (no background vertical salinity gradient). The former corresponds to the 
case where there are lateral temperature gradients imposed on a vertical salinity 
gradient (e.g. Chen et al. 1971 ; Thorpe et al. 1969; Tanny & Tsinober 1988) and the 
latter to the case where there is a compositional gradient imposed on thermally 
stratified fluid (e.g. Ruddick & Turner 1979). 

In each of these cases we still have two free parameters to describe the interleaving 
state. One gives the ratio of the horizontal Rayleigb number to the non-zero vertical 
Rayleigh number, and the other the amplitude, @, of the interleaving layers. For 
both cases (i) and (ii) instead of specifying the ratios of all the Rayleigh numbers it 
is convenient to specifx the growth rate of the fastest-growing mode, q, and from this 
calculate the ratio h / k  and the remaining Rayleigh numbers. 

In each case when the amplitude of the interleaving layers is set to zero we retrieve 
the stability problem that gave rise to the interleaving layers in the first place. As 
such the fastest growing mode is known. A typical plot of the non-dimensional 
growth rate as a function of the wavenumber of the disturbance is shown in figure 
1 for the case R, = 0 and q = 8 (this corresponds to R,  = -358.3, H = 70.43 and 
r h / i  = - 19.32). This shows the narrow band along the line in the k-direction where 
the modes are unstable. Also shown is the basic periodicity of the instabilities when 
expressed in Floquet form. The essential solutions remain unaltered if k is replaced 
by -+, or if k is replaced by k+nk for any integer n. 

As @ is increased the picture changes. Figure 2 shows plots for ( a )  1,6 = 0.096736 
and ( b )  @ = 0.14. In the former the fastest growing modes are no longer just those of 
the basic interleaving, but new modes are now present with the same growth rate. 
Since the modes whose wavenumber lies in the R-direction are parallel to the 
background interleaving layers there is no interaction through the nonlinear terms 
in the governing equations."Near this line there is little interaction and so the details 
are similar to those when @ = 0. Away from this line the growth rates are positive 
in the region of phase space shown (the extreme contours correspond to growth rate 
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FIQURE 2. Contours of constant growth rate of instabilities to interleaving layers with amplitude 
(a) 0.096736 and ( b )  0.14 for the case R ,  = 0 with q = i. The contour interval is 0.2. The maxima 
shown by x have growth rates (a) 0.875 and ( b )  4.721 respectively. 

A = 0.2). The growth rate rises to a maximum at a distance of just over 3 in 
wavenumber space from the line in the k-direction through fhe origin. Along this 
ridge the variations in growth rate are relatively weak. When ~ = 0.14, although the 
tetails very close to the line in the k-direction are still similar to the case where 
~ = 0, the contours in growth rate are even more strongly dominated by the regions 
parallel to this axis with faster growing modes. These regions have peak values 
corresponding to growth rates of A = 4.721, significantly bigger than i. Again the 
variation along this ridge in the growth rates are weak compared with the variations 
across it. Similar qualitative results are obtained for case (ii). 
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FIQIJRE 3. (a) The growth rate and (b) the wavenumber, k = (k ,m) ,  of the fastest growing 
i9stabilities for the case R, = 0 with q = H as functions of the amplitude of the interleaving layers, 
+. The horizontal line in (a) shows the growth rate of the fastest growing interleaving mode, which 
is always unstable with growth rate 3. I n  (b) the horizontal component of the wavenumber, k, is 
shown by the solid line, whilst the vertical component, m, is shown by the dashed line. I n  both 
graphs the ratio of the minimum density gradient to the maximum density gradient is shown along 
the top. 

The variation in the fastest growing mode as a function of the interleaving 
amplitude, $, is shown in figure 3, along with the wavenymbers of the fastest 
growing mode. The branch of fastest growing modes for high $ ceases to be a global 
maximum when it crosses the line q = $; however, the branch of solutions continues 
to be a local maximum as shown. For this case the globally fastest growing mode is 
distinct from the fastest growing interleaving mode when there is a density inversion 
present in the fluid. It will be seen later that this is not always the case. 

The form that such instabilities take is shown in figure 4. Since much of the detail 



108 
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FIQURE 4. (a) Streamlines, ( b )  temperature and (c) salinity of the fastest g;owing instability 
superimposed on those of the interleaving layers for the case q = i, R ,  = 0 and $ = 0.096736. The 
contour intervals are ( a )  0.02, ( b )  0.4, and ( e )  30.0. The positive contours of the stream function in 
(a )  are dashed, while the negative contours in ( b )  and (c) are dashed. In all cases the zero contour 
is solid. 

X 
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of the streamlines occurs on the negative contours these are shown as solid lines and 
the positive contours as dashed lines. The streamlines show that convection cells 
form along the troughs in the interleaving stream function, whilst leaving the peaks 
relatively unaltered. The instabilities form in the regions of reduced vertical density 
gradients. However, the temperature and, more markedly, the salinity show 
relatively small perturbations from the background state. This could lead one to 
expect that these instabilities would be more noticeable if the flow in interleaving 
layers were visualized by means of some form of tracer in the fluid as opposed to 
using the shadowgraph technique. This conjecture is supported by the observations 
of Tsinober et al. (1983). In  their figure 1 two simultaneous photographs were taken 
to show the convection due to a point source of heat in a salinity gradient. One used 
the shadowgraph technique and the other a tracer dye. The details of the convection 
inside the interleaving layers is almost undetectable in the shadowgraph, but shows 
up clearly when dye is used as a tracer. Numerous other examples exist in the 
published experiments where some dye or tracer particles are introduced into the 
fluid showing detail in the convecting layers that is invisible using the shadowgraph 
technique. In their observations Tanny & Tsinober used tracer particles suspended 
in the fluid. Long-exposure photographs of these particles clearly reveal instabilities 
in the convecting layers that bear a close resemblance to the streamlines of figure 4. 
In other cases the flow has been disclosed by dropping crystals of potassium 
permanganate through the fluid leaving vertical coloured streaks behind. These 
streaks then distort with the interleaving layers. It is often apparent that these 
streaks are smoother in the regions with enhanced vertical density gradients, and 
rougher in regions of diminished vertical gradients (see, for example, Thorpe, Hutt 
& Soulsby 1969; Chen, Paliwal & Wong 1976; Chen & Skok 1974; Tanny & Tsinober 
1988). 

These instabilities are driven principally by the temperature and salinity gradients 
in the interleaving layeTs, and not the shear. This can be seen by solving (2.18) with 
the terms involving $ removed, while retaining the appropriate interleaving 
temperature and salinity perturbations. The contours of growth rate as a function of 
k are little changed, showing only a small reduction in the growth rates. Although 
there is an effect, it is destabilizing. Thus we are unlikely to have lost much 
significant information by restricting ourselves to two-dimensional instabilities and 
not allowing arbitrary three-dimensional disturbances for this case. 

The analysis of the instability of finite-amplitude internal gravity waves (Mied 
1976 ; Klostermeyer 1983) bears some similarity with the analysis presented here. 
However, the interpretation of the results of that analysis in terms of resonant triads 
is not applicable in this case. For small-amplitude internal waves the instabilities can 
be considered to be pairs of internal waves whose wavenumber vectors and 
frequencies sum to that of the principal internal wave. For instabilities of the double- 
diffusive interleaving we are looking at  intrusions that are steady, and at  instabilities 
with no imaginary part to their growth rate. As such there is no temporal resonance, 
and so a similar interpretation is not appropriate. 

Similar results are found in the case R ,  = 0. Here we have take? the case q = a as 
an example (this corresponds to R, = 14.15, H = 2.335 and &/k = -3.470). The 
fastest growing modes, and the corresponding wavenumbers, are shown in figure 5.  
A noticeable difference between this case and the previous one is that the growth rate 
of the instabilities exceeds that of the fastest growing interleaving layers when there 
are no density inversions in the background flow. This may be anticipated since the 
regions where the instabilities are centred have destabilizing vertical salinity 
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FIQURE 5. (a)  The growth rate and (b) the wavenumber, k = ( k , m ) ,  of the fastest growing 
ipstabilities for the case R,  = 0 with q = f as functions of the amplitude of the interleaving layers, 
@. The horizontal line in (a )  shows the growth rate of the fastest growing interleaving mode, which 
is always unstable with growth rate t. In (b) the horizontal component of the wavenumber, k, is 
shown by the solid line, whilst the vertical component, m, is shown by the dashed line. In  both 
graphs the ratio of the minimum density gradient to the maximum density gradient is shown along 
the top. 

gradients due to the interleaving layers. Infinite fluids with destabilizing salinity 
gradients are prone to salt fingering if the stabilizing non-dimensional temperature 
gradient is less than a factor i / ~  stronger than the destabilizing non-dimensional 
salinity gradient. Unlike the fully developed salt fingers frequently observed in 
experiments these instabilities are not particularly tall and thin, but are similar to 
marginally unstable salt fingers in a convecting layer in having an order-1 aspect 
ratio (Stern 1960). 

We can look at how the onset of instability is affected as the relative horizontal 
background gradients vary. If we let E be a measure of the ratio of the horizontal 
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FIGURE 6. (a) The amplitude of interleaving, 6, and (b) the horizontal component of the 
wavenumber of the instability aa functions of E ( = H-l )  for the case R ,  = 0. These show the values 
for the fastest growing instability to the interleaving when it has the same growth rate as the most 
unstable interleaving mode. The dashed line in (b) shows the asymptotic limit for small E .  The 
corresponding line is plotted in (a) but is indistinguishable from the solid line. 

gradients to the vertical gradients, whose definition is given below, it can be shown 
that as s + 0 both the non-dimensional growth rate, q, and the vertical wavenumber, 
A, of the backgroynd interleaving remain O( 1)  whilst the horizontal component of 
the wavenumber, k, is O(E).  From this it can be seen that R2 and R,  will both be 
0(sT2)  and Hlwill be O(s-l). It can also be shown that !f' and S will be a factor O(s-') 
larger than $ in this small-s limit. 

We define the parameter B to be the inverse of the horizontal Rayleigh number, H .  
For a given ratio of the Rayleigh numbers the values of q? and the horizontal 

wavenumber component, k, corresponding to the fastest growing modes for the case 
where their growth rate is equal to q can be found. Their behaviour as functions of 
s are shown in figures 6 and 7 for the cases (i) R, = 0 and (ii) R,  = 0 respectively. The 
ranges selected are those for which the horizontal gradients are weaker than the 
vertical gradient (i.e. H < lRTl or H < lRsl as appropriate). For these cases it is 
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FIGURE 7. (a )  The amplitude of interleaving, $, and ( b )  the horizontal component of the 
wavenumber of the instability as functions of E ( =  H - l )  for the case R ,  = 0. These show the values 
for the fastest growing instability to the interleaving when it has the same growth rate as the most 
unstable interleaving mode. The dashed lines in (a) and ( b )  show the asymptotic limits for small E.  

E 

possible for E to take the saye  value for different ratios of the Rayleigh numbers and 
so in case (ii) the graphs of $ and k as functions of E are not single valued. This occurs 
when the background vertical and horizontal gradients are comparable, which is not 
the area of primary concerq here. The other features are qualitatively similar. As E 

initially decreases, so both + and k increase. At a specific value of E the most unstable 
mode changes to another branch of solutions shown by the abrupt jump in k. The 
corresponding values of $ change continuously, but with a discontinuity in the 
gradient of the curves, cl$arly visible in figure 7 ( a ) .  After these critical points the 
curves settle down, with cc e-l and k oc E. In  this limit the vertical lengthscale of 
the disturbances tends towards a fixed proportion the vertical scale of the background 
interleaving. The variation of m for the disturbances with maximal growth rates is 
not shown as there is little interdependency between the growth rates and m and so 
this is of little significance. 
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To investigate the asymptotic limit of small E we rescale (2.16) using 

t = t*,  x = €-1x*, z = z*,  (3.1 a-c) 
H = e-l ,  R - R , * P ,  R ,  = R,*C2, (3.1 d - f )  

-" 
I =  sk*, h=h*, (3.19, h)  

$ = E -1 $ ,  * +€-29*, fi+p$*, (3. i i -k)  
3 = p, p €-IF*, s' = s-'s'*. (3.11%) 

To leading order in E the equations become, after dropping the asterisks, 

( 3 . 2 ~ )  

(3.2b) 

as' A . 
-+@sm(f .x)  
at 

( 3 . 2 ~ )  

For a given ratio of R ,  and R ,  we only have one free parameter describing the 
background state, the amplitude of the interleaving. As before, we solve this system 
by expressing the perturbation in Floquet form (2.17) and solve to find the form of 
the instability to the interleaving layers with zero growth rate. The background state 
is unstable to modes whose growth rate exceeds q when 

(i)R, = 0:  $ = 7.94475 x lop3 ,  k = 33.22, m = 1.126, ( 3 . 3 ~ )  
k = 8.865 x lo5, m = 2.80. (3.36) 

The grow;h rates of the fastest growing instabilities change rapidly for small 
changes in @ for !he case of R ,  = 0 ,  varying by more than one order of magnitude 
for variations in @ of less than 1 YO. Those for the case R ,  = 0 change more slowly, 
yith modes of non-zero growth rate present near the above wavenumber even if 
@ = 0. Because of the sensitivity of the growth rate to the amplitude of the 
interleaving, we would expect instabilities in the case R ,  = 0 to appear much more 
suddenly than in the case R ,  = 0 where the transition to instability may be less well 
defined. 

In  both the above cases the instabilities first occur when fluid is stably stratified. 
The local Richardson number, defined by 

(ii)R, = 0: $ = 1.00374 x 

Ri = -g-/(-)  ap a 2 4  2 

aZ az2  

has local minima along the lines f - x  = nn, taking the values 

(3 .4)  

(3 .5)  

These values are independent of the rescaling involving B .  The smallest values of the 
Richardson number occur along the lines f - x  = 2nn where the instabilities are 
observed. The values that correspond to marginal stability are 

RT = 0 ,  Ri = 42590, ( 3 . 6 ~ )  
R ,  = 0, Ri = 8.378. (3.6b) 
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In both cases Ri is significantly greater than a and so it is clear that the driving 
mechanism for instability is not that of shear. As before it is driven by double 
diffusion with modifications due to shear. 

The double-diffusive mechanisms behind these instabilities can be understood by 
reference to figure 2 of Holyer (1983) for the case R, = 0. If we look at  the local 
salinity and temperature gradients that result from the presence of th,e interleaving 
then we can see that initially 0 for $ = 0. Along the lines of k . x  = 2nx the 
local value of /?SZ/aq increases as $ increases. Since the horizontal gradients are 
weak compared to the vertical temperature gradient, /3Sz.aq is effectively zero for 
the purpose of reference to Holyer’s figure. In her figure 2 (a) it can be seen that the 
fastest growing interleaving corresponding to these local gradients have a faster 
growth rate than those corresponding to the original gradients. Figure 2(c) shows 
that the value of R, for the fastest growing mode decreases as pSz/aq increases. This 
implies, since the local vertical temperature gradient is also increasing, that the 
lengthscale of the fastest growing instabilities is decreasing. In effect the regions 
along the lines k - x  = 2nx are becoming more unstable to interleaving instabilities of 
shorter lengthscales. It is these instabilities, modified by the shear, that evolve. 

4. Conclusions 
The growth rate of the instabilities was found !o be weakly varying with changes 

in their wavenumber vector in the direction k, the wavenumber vector of the 
background interleaving. From this we can conclude that there is weak interaction 
between the instabilities that occur along one layer of local minimum density 
gradient and the next. This is not surprising as energy transfer between adjacent 
layers would be via internal waves. These waves would be absorbed at  the critical 
layers along the lines of maximum density gradient where the velocity vanishes 
(Booker & Bretherton 1967), hence reducing communication between the regions of 
instability. 

The rapidity of the growth rate of these instabilities in the case R, = 0 (commonly 
used in experiments) after the onset of these instabilities would lead us to expect that 
these instabilities would be almost universal in experiments which involve the 
investigation of instabilities in salinity gradients. This rapidity may lead one to 
anticipate that a purely linear description of these instabilities would not be 
appropriate within a short period after the onset of instability. 

We have examined the case where the fluxes of salt and heat are driven by 
molecular diffusivity. We have not looked at the models with fluxes driven by, for 
example, salt fingering. As such the results are only applicable to situations where 
salt fingering is not the dominant vertical mixing process, such as when there is no 
destabilizing vertical salinity gradient. When the effect of salt fingers dominates the 
fluxes of salt and heat other flux models are more appropriate (Stern 1967; 
McDougall 1985). If we model these fluxes by appropriate eddy diffusivities it would 
be expected that similar results to those found here would follow. However, 
incorporating the effects of shear and the nonlinearity of the flux laws for salt fingers 
would require a deeper analysis than is presented here. 

We have restricted ourselves to two-dimensional instabilities. We have not 
considered possible instabilities that would result in a flow that is three-dimensional 
in its nature. Experimental observations of interleaving instabilities usually involve 
observations perpendicular to the horizontal gradients, and hence would tend not to 
show much evidence for three-dimensional disturbances. Those experimental 
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observations that are not perpendicular to the horizontal gradients are derived from 
situations with radial horizontal gradients and as such, have a more complicated 
three-dimensional structure than the basic interleaving. This structure would mask 
possible observations of any three-dimensional instabilities. When E is small it  may 
be anticipated that instabilities would appear aligned with the shear soon after the 
local vertical temperature and salinity gradients exceeded the criterion for the 
occurrence of double-diffusive instabilities. Although this criterion may be met 
before those for the two-dimensional instabilities studied here, the difference in 
amplitude of the interleaving required for the two criteria to be met is small and as 
such little difference will be made to the predictions for the onset of instabilities. 

These instabilities will lead to enhanced mixing in the region of minimum (or 
reversed) vertical density gradient. This would lead to regions developing with 
greater uniformity of salinity and temperature. Such regions will be separated by 
regions with sharper vertical density gradients. These regions of sharper density 
gradients will show up more clearly when observations are made using the 
shadowgraph technique than the interior structure of the instabilities. This enhanced 
mixing will lead to the development of the step-like vertical density structure 
observed so frequently in the presence of double-diffusive interleaving. 
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